Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Composition and luminescence studies of InGaN epilayers grown at different hydrogen flow rates

Identifieur interne : 001029 ( Main/Repository ); précédent : 001028; suivant : 001030

Composition and luminescence studies of InGaN epilayers grown at different hydrogen flow rates

Auteurs : RBID : Pascal:13-0285531

Descripteurs français

English descriptors

Abstract

Indium gallium nitride (InxGa1-xN) is a technologically important material for many optoelectronic devices, including LEDs and solar cells, but it remains a challenge to incorporate high levels of InN into the alloy while maintaining sample quality. A series of InGaN epilayers was grown with different hydrogen flow rates (0-200 sccm) and growth temperatures (680-750 °C) to obtain various InN fractions and bright emission in the range 390-480 nm. These 160-nm thick epilayers were characterized through several compositional techniques (wavelength dispersive x-ray spectroscopy, x-ray diffraction, Rutherford backscattering spectrometry) and cathodoluminescence hyperspectral imaging. The compositional analysis with the different techniques shows good agreement when taking into account compositional gradients evidenced in these layers. The addition of small amounts of hydrogen to the gas flow at lower growth temperatures is shown to maintain a high surface quality and luminescence homogeneity. This allowed InN fractions of up to ∼16% to be incorporated with minimal peak energy variations over a mapped area while keeping a high material quality.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0285531

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Composition and luminescence studies of InGaN epilayers grown at different hydrogen flow rates</title>
<author>
<name sortKey="Taylor, E" uniqKey="Taylor E">E. Taylor</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, SUPA, University of Strathclyde</s1>
<s2>Glasgow G4 0NG</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Glasgow G4 0NG</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fang, F" uniqKey="Fang F">F. Fang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, SUPA, University of Strathclyde</s1>
<s2>Glasgow G4 0NG</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Glasgow G4 0NG</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Oehler, F" uniqKey="Oehler F">F. Oehler</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Materials Science and Metallurgy, University of Cambridge</s1>
<s2>Cambridge CB2 3QZ</s2>
<s3>GBR</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Cambridge CB2 3QZ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Edwards, P R" uniqKey="Edwards P">P. R. Edwards</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, SUPA, University of Strathclyde</s1>
<s2>Glasgow G4 0NG</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Glasgow G4 0NG</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kappers, M J" uniqKey="Kappers M">M. J. Kappers</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Materials Science and Metallurgy, University of Cambridge</s1>
<s2>Cambridge CB2 3QZ</s2>
<s3>GBR</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Cambridge CB2 3QZ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lorenz, K" uniqKey="Lorenz K">K. Lorenz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>IST/ITN, Instituto Superior Técnico</s1>
<s2>2686-953 Sacavém</s2>
<s3>PRT</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Portugal</country>
<wicri:noRegion>2686-953 Sacavém</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Alves, E" uniqKey="Alves E">E. Alves</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>IST/ITN, Instituto Superior Técnico</s1>
<s2>2686-953 Sacavém</s2>
<s3>PRT</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Portugal</country>
<wicri:noRegion>2686-953 Sacavém</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mcaleese, C" uniqKey="Mcaleese C">C. Mcaleese</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, SUPA, University of Strathclyde</s1>
<s2>Glasgow G4 0NG</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Glasgow G4 0NG</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Humphreys, C J" uniqKey="Humphreys C">C. J. Humphreys</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Materials Science and Metallurgy, University of Cambridge</s1>
<s2>Cambridge CB2 3QZ</s2>
<s3>GBR</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Cambridge CB2 3QZ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Martin, R W" uniqKey="Martin R">R. W. Martin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, SUPA, University of Strathclyde</s1>
<s2>Glasgow G4 0NG</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Glasgow G4 0NG</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0285531</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0285531 INIST</idno>
<idno type="RBID">Pascal:13-0285531</idno>
<idno type="wicri:Area/Main/Corpus">000861</idno>
<idno type="wicri:Area/Main/Repository">001029</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0268-1242</idno>
<title level="j" type="abbreviated">Semicond. sci. technol.</title>
<title level="j" type="main">Semiconductor science and technology</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atomic force microscopy</term>
<term>Cathodoluminescence</term>
<term>Dispersive spectrometry</term>
<term>Epitaxial layers</term>
<term>Fabrication property relation</term>
<term>Gallium nitride</term>
<term>Growth mechanism</term>
<term>Indium nitride</term>
<term>RBS</term>
<term>Temperature effects</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Mécanisme croissance</term>
<term>Effet température</term>
<term>Spectrométrie dispersive</term>
<term>Relation fabrication propriété</term>
<term>RBS</term>
<term>Cathodoluminescence</term>
<term>Microscopie force atomique</term>
<term>Nitrure de gallium</term>
<term>Nitrure d'indium</term>
<term>Couche épitaxique</term>
<term>InGaN</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Indium gallium nitride (In
<sub>x</sub>
Ga
<sub>1-x</sub>
N) is a technologically important material for many optoelectronic devices, including LEDs and solar cells, but it remains a challenge to incorporate high levels of InN into the alloy while maintaining sample quality. A series of InGaN epilayers was grown with different hydrogen flow rates (0-200 sccm) and growth temperatures (680-750 °C) to obtain various InN fractions and bright emission in the range 390-480 nm. These 160-nm thick epilayers were characterized through several compositional techniques (wavelength dispersive x-ray spectroscopy, x-ray diffraction, Rutherford backscattering spectrometry) and cathodoluminescence hyperspectral imaging. The compositional analysis with the different techniques shows good agreement when taking into account compositional gradients evidenced in these layers. The addition of small amounts of hydrogen to the gas flow at lower growth temperatures is shown to maintain a high surface quality and luminescence homogeneity. This allowed InN fractions of up to ∼16% to be incorporated with minimal peak energy variations over a mapped area while keeping a high material quality.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0268-1242</s0>
</fA01>
<fA02 i1="01">
<s0>SSTEET</s0>
</fA02>
<fA03 i2="1">
<s0>Semicond. sci. technol.</s0>
</fA03>
<fA05>
<s2>28</s2>
</fA05>
<fA06>
<s2>6</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Composition and luminescence studies of InGaN epilayers grown at different hydrogen flow rates</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>TAYLOR (E.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>FANG (F.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>OEHLER (F.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>EDWARDS (P. R.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>KAPPERS (M. J.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>LORENZ (K.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>ALVES (E.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>MCALEESE (C.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>HUMPHREYS (C. J.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>MARTIN (R. W.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics, SUPA, University of Strathclyde</s1>
<s2>Glasgow G4 0NG</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Materials Science and Metallurgy, University of Cambridge</s1>
<s2>Cambridge CB2 3QZ</s2>
<s3>GBR</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>IST/ITN, Instituto Superior Técnico</s1>
<s2>2686-953 Sacavém</s2>
<s3>PRT</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s2>065011.1-065011.7</s2>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21041</s2>
<s5>354000503027290110</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>17 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0285531</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Semiconductor science and technology</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Indium gallium nitride (In
<sub>x</sub>
Ga
<sub>1-x</sub>
N) is a technologically important material for many optoelectronic devices, including LEDs and solar cells, but it remains a challenge to incorporate high levels of InN into the alloy while maintaining sample quality. A series of InGaN epilayers was grown with different hydrogen flow rates (0-200 sccm) and growth temperatures (680-750 °C) to obtain various InN fractions and bright emission in the range 390-480 nm. These 160-nm thick epilayers were characterized through several compositional techniques (wavelength dispersive x-ray spectroscopy, x-ray diffraction, Rutherford backscattering spectrometry) and cathodoluminescence hyperspectral imaging. The compositional analysis with the different techniques shows good agreement when taking into account compositional gradients evidenced in these layers. The addition of small amounts of hydrogen to the gas flow at lower growth temperatures is shown to maintain a high surface quality and luminescence homogeneity. This allowed InN fractions of up to ∼16% to be incorporated with minimal peak energy variations over a mapped area while keeping a high material quality.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H66</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Effet température</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Temperature effects</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Spectrométrie dispersive</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Dispersive spectrometry</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Espectrometría dispersiva</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Relation fabrication propriété</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Fabrication property relation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Relación fabricación propiedad</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>RBS</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>RBS</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Cathodoluminescence</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Cathodoluminescence</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Nitrure de gallium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Gallium nitride</s0>
<s5>15</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Galio nitruro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Nitrure d'indium</s0>
<s5>16</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Indium nitride</s0>
<s5>16</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Indio nitruro</s0>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Couche épitaxique</s0>
<s5>17</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Epitaxial layers</s0>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>InGaN</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fN21>
<s1>273</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001029 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001029 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0285531
   |texte=   Composition and luminescence studies of InGaN epilayers grown at different hydrogen flow rates
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024